

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FDPF33N25T N-Channel UniFETTM MOSFET 250 V, 33 A, 94 mΩ

Features

- $R_{DS(on)}$ = 94 m Ω (Max.) @ V_{GS} = 10 V, I_D = 16.5 A
- Low Gate Charge (Typ. 36.8 nC)
- Low C_{rss} (Typ. 39 pF)
- 100% Avalanche Tested

Applications

- PDP TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

August 2014

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter	FDPF33N25T FDPF33N25TRDTU	Unit	
V _{DSS}	Drain-Source Voltage	250	V		
ID	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)	33* 20.4*	A A	
I _{DM}	Drain Current	- Pulsed (Note 1)	132*	Α	
V _{GSS}	Gate-Source voltage	± 30	V		
E _{AS}	Single Pulsed Avalance	che Energy (Note 2)	918	mJ	
I _{AR}	Avalanche Current	(Note 1)	33	Α	
E _{AR}	Repetitive Avalanche Energy		23.5	mJ	
dv/dt	Peak Diode Recovery	dv/dt (Note 3)	4.5	V/ns	
P _D	Power Dissipation	(T _C = 25°C) - Derate Above 25°C	37 0.29	W W/°C	
T _{J,} T _{STG}	Operating and Storag	-55 to +150	°C		
TL	Maximum Lead Tempe	300	°C		

*Drain current limited by maximum junction temperature.

Thermal Characteristics

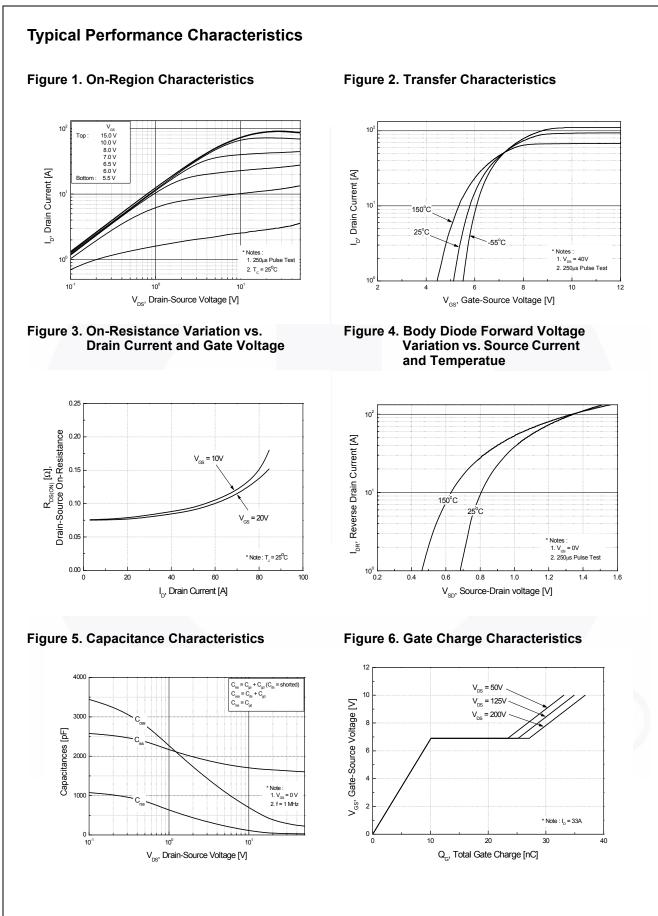
Symbol	Parameter	FDPF33N25T FDPF33N25TRDTU	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	3.4	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	62.5	0/11

Package Marking and Ordering Information	Package	Marking	and	Ordering	Information
--	---------	---------	-----	----------	-------------

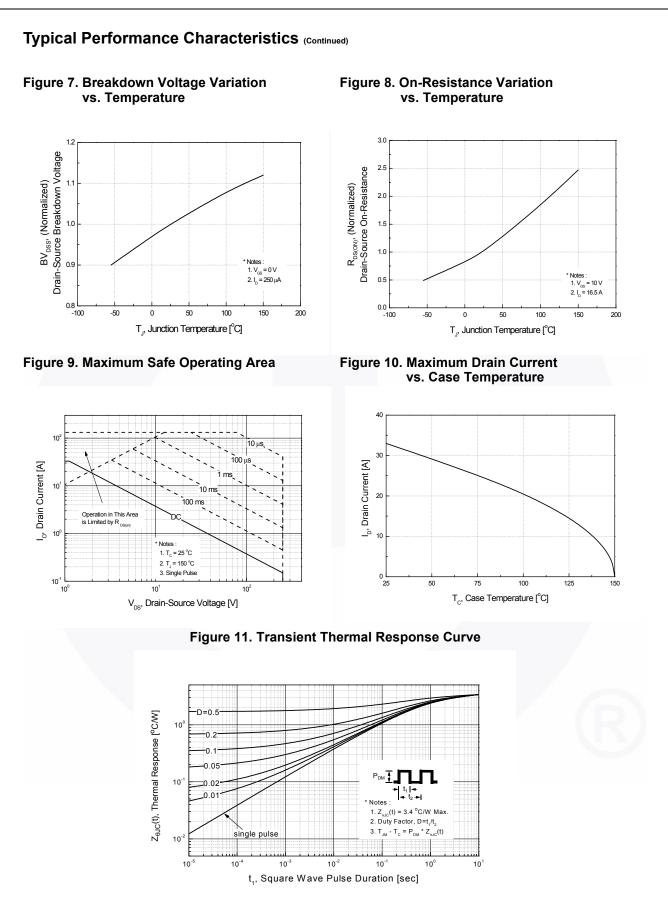
Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDPF33N25T	FDPF33N25T	TO-220F	Tube	N/A	N/A	50 units
FDPF33N25TRDTU	FDPF33N25T	TO-220F (LG-formed)	Tube	N/A	N/A	50 units

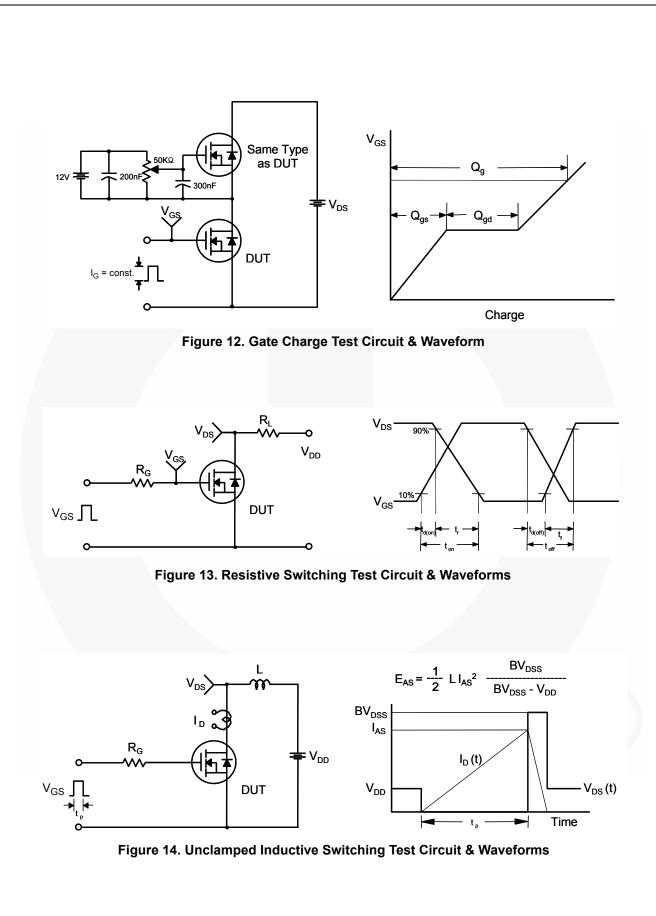
Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = 250 μ A, T_{J} = 25°C				V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		0.25		V/∘C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 250 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 200 \text{ V}, T_{C} = 125^{\circ}\text{C}$			1 10	μΑ μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 16.5 A		0.077	0.094	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 16.5 A		26.6		S
Dynamic C	Characteristics	•				
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		1640	2135	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		330	430	pF
C _{rss}	Reverse Transfer Capacitance			39	59	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V_{DD} = 125 V, I _D = 33 A, V_{GS} = 10 V, R _G = 25 Ω		35	80	ns
t _r	Turn-On Rise Time			230	470	ns
t _{d(off)}	Turn-Off Delay Time			75	160	ns
t _f	Turn-Off Fall Time	(Note 4)		120	250	ns
Qg	Total Gate Charge	V _{DS} = 200 V, I _D = 33 A,		36.8	48	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V (Note 4)		10		nC
Q _{gd}	Gate-Drain Charge			17		nC
Drain-Sou	rce Diode Characteristics and Maximur	n Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				33	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				132	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 33 A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 33 A,		220		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt =100 A/µs		1.71		μC

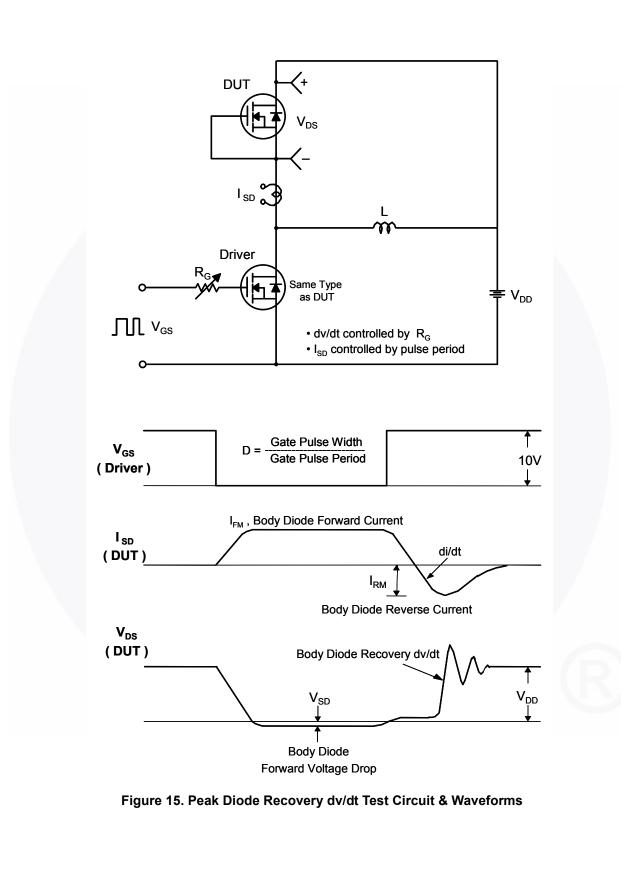

Notes:

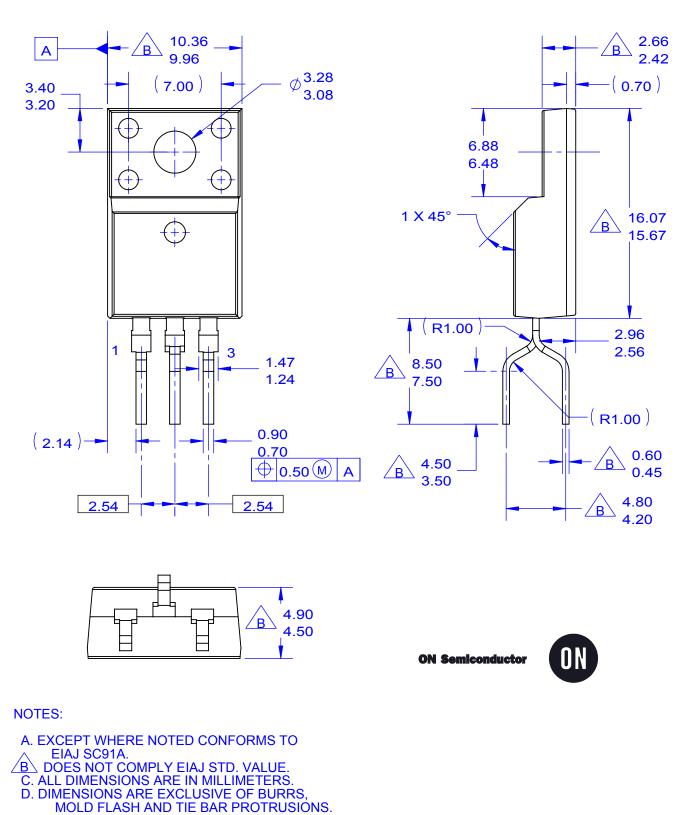
1. Repetitive rating: pulse-width limited by maximum junction temperature.

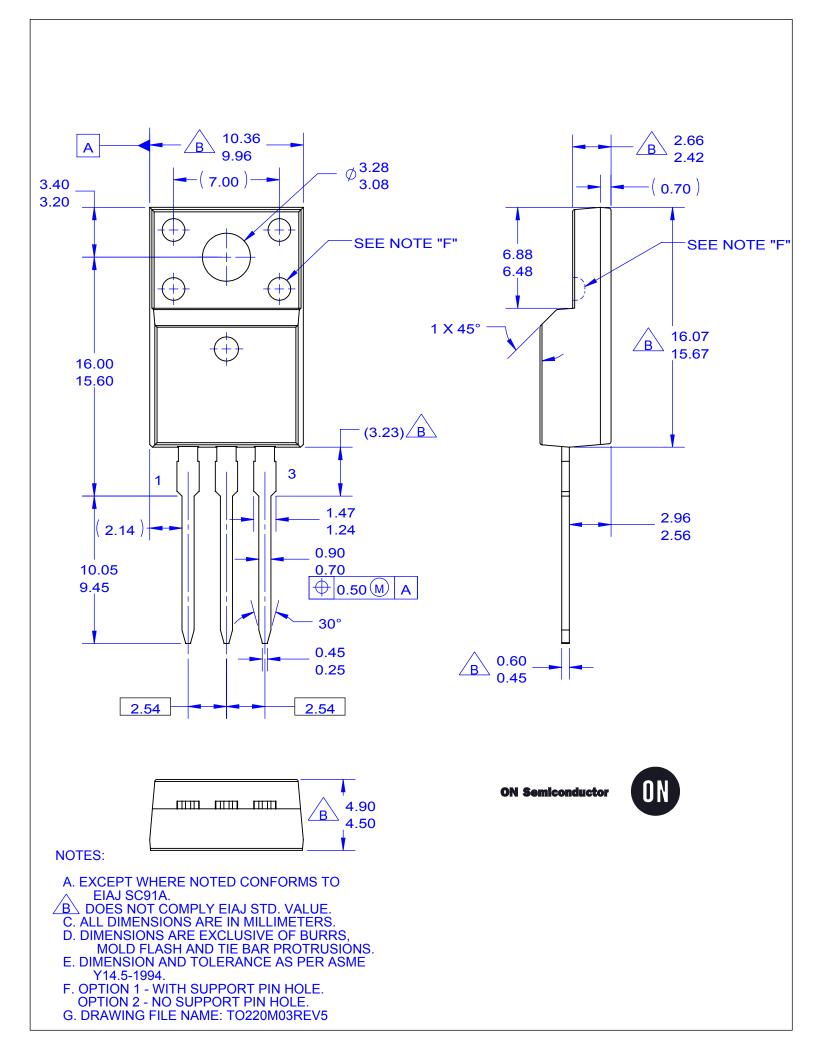

2. L = 1.35 mH, I_{AS} = 33 A, V_{DD} = 50 V, R_G = 25 $\Omega,$ starting T_J = 25°C.


3. I_{SD} \leq 33 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.

4. Essentially independent of operating temperature typical characteristics.


©2007 Fairchild Semiconductor Corporation FDPF33N25T Rev. C2




FDPF33N25T — N-Channel UniFETTM MOSFET

FDPF33N25T — N-Channel UniFETTM MOSFET

- E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.
- F. DRAWING FILE NAME: TO220N03REV2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC